Abstract

The effect of intermolecular hydrogen bonding in the solid state on the molecular structures of imidazole and 1,2,4-triazole has been studied by SCF ab initio molecular orbital calculations at the HF/6-31G* level. The crystals of these species contain endless chains of molecules, connected by unusually strong N-H ⋯ N hydrogen bonds. Our simulation of the crystal field, based on two simple models, unequivocally shows that hydrogen bond formation not only lengthens the N-H bond but also causes a concerted change in the length of two N-C bonds. The change indicates that the contribution of a polar canonical form to the structure of the molecule increases in going from the gaseous phase to the crystal. This provides a rationale for the strong intermolecular hydrogen bond occurring in the solid state. We have also optimized the geometry of the free molecules at the MP2/6-31G* level, to investigate the effect that correcting for electron correlation has on the equilibrium structure of these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.