Abstract

The effect of various types of intermediate plastic deformation on the high-temperature creep of polycrystalline aluminum is studied. Intermediate deformation is performed after testing for 0.44 of the time to failure tf via the single or multiple action of a hydrostatic pressure of 1000 MPa on porosity or via tension or compression at atmospheric pressure. Intermediate deformation is shown to decrease the creep rate, to increase the time to failure, and to increase the grain size. The change in the creep rate is maximal upon the cyclic (in the same test time intervals) action of pressure. A relation between the creep rate and the grain size has been reveled. The detected decrease in the creep rate is assumed to be caused by a decrease in the density of mobile dislocations (due to recrystallization).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.