Abstract

This article presents the results of a current study on the influence of interlayer delaminations on the static and fatigue behavior of composite laminates. The composite was manufactured by a vacuum molding method using 12 balanced bi-directional carbon fiber layers and epoxy resin. Delaminations with different length were artificially introduced. The specimens with dog bone shape were cut from the original plates having 3 mm thickness and fiber weight fraction of 0.66. Static tests were performed in order to study the influence of delamination size on the laminate stiffness and strength. Complementary finite element analysis was carried out showing the influence of angular misalignments of fiber/matrix delaminations on the laminate stiffness. Fatigue tests were performed in load control for R = 0.05 and R = —1, with a loading frequency of 10 Hz, at room temperature. The artificial interlayer delaminations have a negligible influence on the fatigue strength for tensile cycle loadings, but produce significant decreases in strength for R = —1 fatigue loadings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.