Abstract

This paper presents a theoretical-experimental study for the prediction of the interfacial heat transfer coefficient during the horizontal directional solidification of an Al-3wt.%Cu alloy on water cooled stainless steel chill under transient heat flow conditions. Eight thermocouples were connected with the casting and the time-temperature data were recorded automatically. The thermocouples were placed at 5, 10, 15, 20, 30, 50, 70 and 90 mm from the metal-mold interface. A numerical technique which compares theoretical and experimental thermal profiles was used to measure the heat transfer coefficient values. This has permitted the evaluation of the variation of this thermal parameter along the solidification which is represented by a power equation that shows the time dependence during the process given by hi = constant (t)-n, which represents the best fit between the experimental and calculated curves. The obtained results also include the variation of both primary and secondary dendritic arm spacings of alloy analyzed as a function of heat transfer coefficient. These dendrite arm spacings were found to decrease as the values of this coefficient are increased. Finally, an experimental law of the Hall-Petch type is proposed relating the resulting microhardness to the heat transfer coefficient investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.