Abstract

In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.