Abstract

ABSTRACTBackground: Diabetes has recently been identified as a risk factor for a variety of cancers, possibly due to hyperinsulinemia or exogenous insulin use. Thyroid cancer is the most common endocrine malignancy, and its incidence has been exponentially increasing worldwide at an alarming rate. The aim of this study was to establish whether insulin use affects thyroid cancer development and progression, specifically cell proliferation and migration in vitro.Methods: In this study, we investigated the effects of the insulin agents most commonly used in the clinic, regular human insulin (HI) and insulin glargine (IG), on the proliferation and migration of thyroid cells.Results: Both HI and IG affected the thyroid cells in a dose-dependent manner and at high concentrations significantly promoted thyroid cell proliferation and tumor cell migration. The promoting effect might be elicited by activation of the insulin receptor and insulin-like growth factor-1 receptor and through the downstream Akt-signaling pathway, which inhibits the activity of the tumor-suppressor FoxO3a. In particular, MAPK-signaling cascades were activated in papillary thyroid carcinoma cell-1 cells but not in follicular rat thyroid-5 cells.Conclusion: The in vitro evidence demonstrated that HI and IG can promote thyroid cell proliferation and tumor cell migration at supraphysiological concentrations, but the effect was not significant at low concentrations. Whether high-dose insulins could affect diabetic patients with thyroid cancer or undetected (pre)cancerous lesions needs further in vivo study.Abbreviations: HI: human regular insulin; IG: insulin glargine; IR: insulin receptor; IGF-1R: insulin-like growth factor-1 receptor; Akt: protein kinase B (PKB); MAPK: mitogen-activated protein kinase; FoxO3a: the forkhead box-containing protein: class O 3a

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.