Abstract

The influence of the installation method on the soil flow pattern, resulting external radial total stress changes, and final external shaft friction after consolidation has been investigated for caissons in soft clay by means of centrifuge model tests, large deformation finite-element (FE) analysis, and a simple cavity expansion approach. Both the centrifuge measurements and the FE results show that more soil is forced into the caisson under suction than under jacking. However, the difference in the resulting external radial total stress changes or penetration-induced excess pore-water pressure is much less significant, since the expansion-induced excess pore pressure is smaller for thin-walled caissons than for driven piles. After subsequent consolidation, the influence of the installation method reduces further, and the final shaft friction ratios are close for the two installation methods. Based on the magnitude of heave ratios derived from the centrifuge measurements and the FE analysis, a simple form of cavity expansion approach can reasonably estimate external radial stress changes during installation and after consolidation, and final shaft friction ratios for the caissons. An approach for estimating the external shaft friction ratios for vertical pullout of sealed caissons is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.