Abstract
The effect of both leachate recirculation (at 40 and 50 °C) and the mode of inoculum addition (at 50 °C) on the performance of a non-mixed accumulation (i.e. fed batch) system treating solid cattle wastes was investigated, using laboratory scale reactors at a filling time of 60 days. A relatively high methane production rate (MPR) and low stratification of intermediates occur with leachate recirculation. The leachate recirculation volume flow and methane production rate are smaller at 40 °C than at 50 °C: 0·31 and 0·7 l [CH4] l−1 [reactor] day−1, respectively. The increased MPR at higher temperature is at one hand caused by the increase of microbial activity, at the other hand by the lower viscosity causing the increased leachate recirculation volume. Dividing the inoculum in equal doses and distributing them with the feed positively affects the system behaviour as compared to adding the same inoculum amount at the reactor bottom at the start only. Without addition of inoculum a very poor system performance was observed. The average MPR was 0·2, 0·4 and 0·5 l [CH4] l−1 [reactor] day−1 for the reactor without inoculum, inoculum addition at the reactor bottom and inoculum addition in different equal doses, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.