Abstract
Partially premixed compression ignition (PPCI) and multiple premixed compression ignition (MPCI) mode of straight-run naphtha have been investigated under different injection strategies. The MPCI mode is realized by the multiple premixed combustion processes in a sequence of “spray-combustion-spray-combustion” around the compression top dead center. The spray and combustion events are preferred to be completely separated, without any overlap in the temporal sequence in order to ensure the multiple-stage premixed compression ignition. The PPCI mode is well known as the “spray-spray-combustion” sequence, with the start of combustion separated from the end of injection. Straight-run naphtha with a research octane number (RON) of 58.8 is tested in a single cylinder compression ignition engine whose compression ratio is 16.7 and displacement is 0.5 l. Double and triple injection strategies are investigated as the last injection timing sweeping at 1.0 MPa IMEP and 1800 rpm conditions. The MPCI mode is achieved using the double injection strategy, but its soot emission is higher than the PPCI mode under triple injection strategy. This is mainly because of the lower RON of the straight-run naphtha and the ignition delay is too short to form an ideally premixed combustion process after the second injection of straight-run naphtha. Diesel fuel is also tested under the same operating conditions, except for employing a single injection strategy. The naphtha PPCI and MPCI mode both have lower fuel consumption and soot emission than diesel fuel single injection mode, but the THC emissions are both higher than that of diesel fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.