Abstract

The study considers an effect of the nonlinear inertial terms in the Brinkman filtration equation on the characteristics of coupled flows in a pure fluid and porous medium in the frameworks of two independent problems. The first problem is the forced boundary-layer flow overlying the Darcy–Brinkman porous medium. The Prandtl theory is used, and the self-similar equations are built to describe it. It is shown that the inertial terms have a valuable effect on the boundary-layer structure because of the large velocity gradient in the transition zone. The boundary-layer thickness in a porous medium rapidly grows at large Reynolds numbers. The velocity magnitude and gradient at the interface also change. The second independent problem is an analysis of the inertial terms effect on the flow stability. The neutral curves of the full and linearized flow models are built using the shooting method. They have different short-wave asymptotic, but there are no significant changes in the critical Reynolds numbers and corresponding wave numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.