Abstract

Abstract This paper presents the problems associated with the rapid change of the rock stress-strain state in terms of increasing the rate of coal mining. Parameters of the roof collapse are determined depending on the rate of a longwall advancing under conditions of poor rocks. Statistical data are processed to obtain a general trend concerning the mining rate impact on the roof collapse. The statistical strength theory is applied to explain the increase in mined-out space and the size of hanging roof behind a coal face. Numerical simulation is carried out to determine a critical size of mined-out space that provokes a roof collapse. The area of yielded rocks is outlined using the criterion developed taking into account the rate of longwall advancing. A general regularity is obtained to determine the roof collapse parameters. The developed technics gives a possibility to predict the moment of general roof collapse at the initial stage of longwalling to prevent the negative effect of the rapid stress redistribution provoking joints propagation and intensive gas release. The estimation of the rock stress-strain state considering the rate of mining operations can be useful for tasks related to a new technology implementation. The statistical strength theory and failure criterion applied together provides adequate planning of mining activities and the assessment of natural hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.