Abstract

Hypoxic conditions in the cornea affect epithelial function by activating Polo-like kinase 3 (Plk3) signaling and the c-Jun·AP-1 transcription complex, resulting in apoptosis of corneal epithelial cells. Hypoxic stress in the culture conditions also regulates limbal stem cell growth and fate. In this study, we demonstrate that there is a differential response of Plk3 in hypoxic stress-induced primary human limbal stem (HLS) and corneal epithelial (HCE) cells, resulting in different pathways of cell fate. We found that hypoxic stress induced HLS cell differentiation by down-regulating Plk3 activity at the transcription level, which was opposite to the effect of hypoxic stress on Plk3 activation to elicit HCE cell apoptosis, detected by DNA fragmentation and TUNEL assays. Hypoxic stress-induced increases in c-Jun phosphorylation/activation were not observed in HLS cells because Plk3 expression and activity were suppressed in hypoxia-induced HLS cells. Instead, hypoxic stress-induced HLS cell differentiation was monitored by cell cycle analysis and measured by the decrease and increase in p63 and keratin 12 expression, respectively. Hypoxic stress-induced Plk3 signaling to regulate c-Jun activity, resulting in limbal stem cell differentiation and center epithelial apoptosis, was also found in the corneas of wild-type and Plk3(-/-)-deficient mice. Our results, for the first time, reveal the differential effects of hypoxic stress on Plk3 activity in HLS and HCE cells. Instead of apoptosis, hypoxic stress suppresses Plk3 activity to protect limbal stem cells from death and to allow the process of HLS cell differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.