Abstract

The bi-alkali pnictogens have attracted significant attention for optoelectronic and photocathodic device applications. However, in most of the compounds belonging to this family, there has been less effort put into investigating the mechanical properties and topological phase transitions (TPT) of the compounds. Here, in the framework of density functional theory, the mechanical properties and topological phase transition of NaLi2Bi under hydrostatic pressures are investigated. Elastic constants and phonon calculations have shown the mechanical and dynamical stability of this compound under hydrostatic tension and compression. The analysis of the elastic constants show that the NaLi2Bi in the equilibrium state is an auxetic material with a negative Poisson’s ratio of -0.285, which changes to a material with a positive Poisson’s ratio under hydrostatic tension. Meanwhile, Poisson’s ratio and Pugh ratio indicate that this compound has brittle behavior and maintains it under hydrostatic pressures. The calculated results of the band structure within the generalized gradient approximation (GGA) (Tran-Blaha modified Becke-Johnson exchange potential approximation (TB-mBJ)) show that NaLi2Bi is a nontrivial topological material (trivial topological material). It was found that hydrostatic compression (tension) in the GGA (TB-mBJ) approach leads to a transition from a nontrivial (trivial) to a trivial (nontrivial) topological phase for this compound. Moreover, the calculated Wannier charge centers confirm the TPT. Identifying the mechanisms controlling the auxetic behavior and TPT of this compound offers a valuable feature for designing and developing high-performance nanoscale electromechanical and spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.