Abstract

The binding energies of excitons in finite barrier quantum wells under hydrostatic pressure are calculated by a variational method. The influences of hydrostatic pressure on the effective masses of the electron and hole, the dielectric constant, and the conduction band offset between the well and barriers are taken into account in the calculation. The numerical results for the GaAs/Al x Ga 1-x As and GaN/Al x Ga 1-x N quantum wells are given respectively. It is shown that the exciton binding energy increases linearly with the pressure and the pressure effect on arsenide quantum wells is more obvious than that on nitride ones. The exciton binding energies monotonically increase with increasing barrier height, which is related to the Al concentration of the barriers and the influence of the pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.