Abstract
Single-walled carbon nanotubes containing 5.4 wt% H are prepared under a hydrogen pressure of 50 kbar at the temperature T = 500°C. Analysis of the optical transmission spectra has revealed that the hydrogenation of single-walled carbon nanotubes brings about suppression of high-frequency conduction provided by free charge carriers in the nanotubes, the disappearance of interband electronic transitions, and the appearance of an absorption line at 2845 cm−1 corresponding to stretching vibrations of the C-H bonds. The removal of hydrogen from hydrogenated single-walled carbon nanotubes owing to vacuum annealing at a temperature of 500°C is accompanied by a linear decrease in the intensity of this line as the hydrogen content in the system decreases. This phenomenon indicates that the greater part of the hydrogen atoms in single-walled carbon nanotubes are covalently bonded to the carbon atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Russian Academy of Sciences: Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.