Abstract

The effect of local hydrogen concentration on nanoindentation-induced phase transformations has been investigated in ion-implanted amorphous silicon (a-Si). Elevated concentrations of H ranging from 5×1018 to 5×1020 cm−3, over the depth of indentation-induced phase transformed zones have been formed in the a-Si by H ion-implantation. Indentation has been performed under conditions that result in phase transformed zones composed totally of Si-III/Si-XII in the “H-free” samples. Deformation during indentation and determination of phase transformation behavior has been examined by analysis of load/unload curves, Raman microspectroscopy, and cross-sectional transmission electron microscopy (XTEM). With increasing H content, the probability of forming Si-III/Si-XII and the volume fraction of Si-III/Si-XII decrease. XTEM shows that these reduced volumes are randomly distributed within the phase transformed zone and are surrounded by indentation-induced a-Si. For a H concentration of 5×1020 cm−3, the probability of forming Si-III/Si-XII is reduced to 0.5 compared to 1 in “H-free” material and for those indents that exhibit the Si-III/Si-XII end phase the volume fraction is approximately 60 %. We suggest that the monohydride bonding configuration of Si and H in a-Si reduces the formation of the high pressure crystalline phases by retarding growth of the crystallites through a similar mechanism to that of hydrogen-retarded solid phase crystallization of a-Si to diamond cubic crystalline Si-I phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.