Abstract

PurposeCohesive sediment is able to flocculate and create flocs, which are larger than individual particles and less dense. The phenomenon of flocculation has an important role in sediment transport processes such as settling, deposition and erosion. In this study, laboratory experiments were performed to investigate the effect of key hydrodynamic parameters such as suspended sediment concentration and salinity on floc size and settling velocity. Results were compared with previous laboratory and field studies at different estuaries.Materials and methodsExperimental tests were conducted in a 1-L glass beaker of 11-cm diameter using suspended sediment samples from the Severn Estuary. A particle image velocimetry system and image processing routine were used to measure the floc size distribution and settling velocity.Results and discussionThe settling velocity was found to range from 0.2 to 1.2 mm s−1. Settling velocity changed in the case of increasing suspended sediment concentration and was controlled by the salinity. The faster settling velocity occurred when sediment concentration is higher or the salinity is lower than 2.5. On the other hand, at salinities higher than 20, in addition to increasing SSC, it was found that the situation was reversed, i.e. the lower the sediment concentration, the faster the settling velocity.ConclusionsSediment flocculation is enhanced with increasing sediment concentration but not with increasing salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.