Abstract

1.5 mm, 0.7 mm and 0.3 mm thicknesses TiNP/2014Al composite sheets were obtained by hot rolling deformation carried out on as-extruded TiNP/2014Al composite rod. The effect of hot rolling deformation on high strain rate superplastic deformation behavior of the composite was researched by tensile experiment, OM, and SEM. Results show that 0.7mm thickness TiNP/2014Al composite sheet can gain the maximum elongation of 351% at 818 K and 3.3×10-1 s-1, and the m value is 0.43. The optimum strain rate increases with decreasing thickness of the TiNP/2014Al composite sheets. Flow stress and work hardening ability show contrary change tendency to optimum strain rate. The 0.7 mm thickness TiNP/2014Al composite sheet has medium flow resistance stress and shows excellent stability of plastic flow. Fracture surfaces show that the main superplastic deformation mechanism of the TiNP/2014Al composite includes in grain boundary sliding. Subgrain boundary sliding maybe another superplastic deformation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.