Abstract

There is a growing need for the high strength steels with high formability for many applications. Using the concept of transformation induced plasticity (TRIP) observed in austenitic steels, one can obtain the combination of high strength and high formability. However, these austenitic steels require a fairly large amount of alloying elements which impose several practical problems for their widespread applications. On the other hand, it has been shown that the dual phase steels possess the relatively good combination of strength and formability due to their characteristic microstructure. The major microstructural constituents of dual phase steels are soft ferrite and hard martensite/bainite with small amount of retained austenite. In recent years, the beneficial effect of retained austenite on the mechanical properties of dual phase steels have been re-recognized and accordingly, there have been several investigations on developing the so-called TRIP-aided dual phase steels having increased amount of retained austenite in the microstructure. Most investigations on these TRIP-aided dual phase steels have been concentrated on the effects of heat treatment conditions and alloying elements such as Si, Mn, C and P on the microstructure and mechanical properties of cold rolled sheet steels. There have also been a few studies on developing suchmore » steels by hot rolling, and the emphases of these studies are placed mostly on increasing the amount of retained austenite. However, the microstructure of these hot rolled steels is far from optimum, consisting of large packets of hard second phase particles. The main objective of the present study is to modify the microstructure of this class of steels by varying the hot rolling conditions. The steel used in the present study is Fe-0.2C-2Si-1.5Mn.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.