Abstract

Annealing and pressing are useful for improvement of the structural ordering of graphitic materials. Depending on the processing conditions, this may cause a gain or deteriorate the performances of graphitic anodes in batteries. In the present work, we study the effect of hot pressing on the interaction of multilayer holey graphene (HG) material with lithium ions. The initial HG sample with the holes of about 0.6–2 nm was pressured at 100 bar and room temperature, 600 °C, and 800 °C or at 500 bar and 800 °C. The analysis of the samples using X‐ray diffraction detected an increase in the thickness of graphene stacks after pressing. Electrochemical tests revealed the best performance for the HG sample produced at 100 bar and 600 °C. A rise of the temperature and pressure reduces the contribution from cross‐plane diffusion of lithium ions in the HG capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.