Abstract

Abstract The impact of the independent variables, homogenization pressure ( p 1 ), concentration factor of microfiltration ( i ) and pH on curd firmness (CF) and syneresis of curd grains was studied. Texture analysis was used to characterize CF of the rennet-induced gels. The analysis of a two-level factorial design revealed that i , p 1 , pH and the interaction of i and pH had the most important influence on CF. Cutting time was therefore individually determined for each milk system using small amplitude oscillatory rheometry for generating comparable conditions for the syneresis experiments. Syneresis of curd grains with a diameter of 11 mm was followed at 35 °C close to semi-hard cheesemaking conditions. The permeate release during microfiltration was taken into consideration, allowing an evaluation of syneresis of grains made from concentrated and unconcentrated milk. It was shown that with increasing milk concentration less curd treatment time was needed to reach a certain syneresis value. Hence, total processing time in cheesemaking is decreased. Analysis of variance revealed that syneresis was affected by the individual variables. Kinetic parameters were satisfactorily estimated through regression ( R 2 >0.98) and it was shown that milk composition and concentration due to microfiltration markedly influenced the endpoint of syneresis, RWR max . The experiments demonstrate that microfiltration and homogenization can be combined to reach CF and syneresis comparable to untreated milk used in conventional cheesemaking. This meets one claim of the cheese industry when implementing both technologies in the manufacture process, since consistency and quality of the ripened cheese are expected to be unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.