Abstract

An investigation into the structural stability, electronic and elastic properties of Ti 3GeC 2 under high hydrostatic pressure was conducted using first-principles calculations based on density functional theory (DFT). From the energy and enthalpy calculations, and the variations of elastic constants with pressure, we conclude that α ‐ Ti 3 GeC 2 is most stable upon compression to 100 GPa, which is not consistent with the nonhydrostatic in situ synchrotron X-ray diffraction studies. The higher structural stability was analyzed in terms of electronic level. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of all polymorphs of Ti 3GeC 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.