Abstract

Three-dimensional (3D) graphene/SiBCN composites (GF/SiBCN) were prepared by depositing SiBCN ceramics in 3D graphene foam via the chemical vapor infiltration technique. The effect of the heat treatment temperature on the microstructure, phase composition, and electromagnetic properties of the GF/SiBCN composite was investigated. The SiBCN ceramics maintained an amorphous structure in the composite below 1400 °C above which the crystallinity of the free carbon phase gradually increased. While the Si3N4 and B4C phases started to crystallize at 1500 °C and their crystallinity increased with temperature, SiC was observed at 1700 °C. The electromagnetic shielding effectiveness of GF/SiBCN increased with the heat treatment temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.