Abstract

A copper-bearing Ti–6Al–4V–5Cu alloy was processed and subjected to different heat treatments to explore the relationship among microstructure, antibacterial performance, and cytocompatibility. Characterization of microstructure revealed that the solution treated alloy consisted of α phase, α′ phase and β phase, while besides these phases, the aged alloy also contained the precipitations of intermetallic Ti2Cu compound. The solution treated alloy showed better antibacterial performance with increasing the solution temperature. The Cu ions released from Ti–6Al–4V–5Cu alloy could effectively inhibit the formation of bacterial biofilm on the surface of alloy, and do not induce any cytotoxicity. The optimal heat treatment for Ti–6Al–4V–5Cu alloy was solution treated at 930 °C, at which it could exhibit both promising antibacterial performance and no cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.