Abstract

The stability of a boundary layer with volume heat supply on the attachment line of a swept wing is investigated within the framework of the linear theory at supersonic inviscid-free-stream Mach numbers. The results of numerical calculations of the flow stability and neutral curves are presented for the flow on the leading edge of a swept wing with a swept angle χ=60° at various free-stream Mach numbers. The effect of volume heat supply on the characteristics of boundary layer stability on the attachment line is studied at a surface temperature equal to the temperature of the external inviscid flow. It is shown that in the case of a supersonic external inviscid flow volume heat supply may result in an increase in the critical Reynolds number and stabilization of disturbances corresponding to large wave numbers. For certain energy supply parameters the situation is reversed, the unstable disturbances corresponding to the main flow-instability zone are stabilized but another zone of flow-instability with small wave numbers and a significantly lower critical Reynolds number appears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.