Abstract
Halogenation, particularly fluorination, is commonly used to manipulate the energetics, stability, and morphology of organic semiconductors. In the case of organic photovoltaics (OPVs), fluorination of electron donor molecules or polymers at appropriate positions can lead to improved performance. In this contribution, we use ultraviolet photoelectron spectroscopy, external quantum efficiency measurements of charge-transfer (CT) states, and density functional theory calculations to systematically investigate the effects of halogenation on the bulk solid-state energetics of model anthradithiophene (ADT) materials, their interfacial energetics with C60, and the energetics of various ADT:C60 blend compositions. In agreement with previous work, nonhalogenated ADT molecules show higher energy CT states in blends with C60 and lower energy CT states in the ADT/C60 bilayers. However, this trend is reversed in the halogenated ADT/C60 systems, wherein the CT state energies of ADT:C60 blends are lower than those in t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.