Abstract

Diminished intercellular communication has been associated with heightened sensitivity of cultured cells to morphological transformation and enhancement of transformation by tumor promoters. Microinjection of Lucifer yellow dye was employed to evaluate intercellular communication between transformable C3H/10T1/2 murine fibroblasts under a variety of culture conditions. Intercellular communication assayed by dye transfer from injected cells to surrounding cells in contact occurred in logarithmically growing cultures, declined to very low levels as confluence was attained, and then resumed upon the formation of mature confluent monolayers. Dye-transfer networks of 50 or more cells resulted from injection of single monolayer cells. Freeze-fracture electron microscopy confirmed the presence of gap junction structures in confluent cultures. Treatment with the initiating agent N-methyl-N'-nitro-N-nitrosoguanidine and/or the tumor promoter 2,3,7,8-tetrachlorodibenzo-p-dioxin did not inhibit intercellular communication between C3H/10T1/2 cells during 6-week transformation experiments. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate produced a transient inhibition of dye-coupling upon first introduction to cultures and prolonged the period of diminished dye-coupling at the attainment of confluence, but did not inhibit subsequent interactions between monolayer cells. A simple relationship thus could not be established between levels of dye-coupling within monolayers and focus formation events. Curiously, although the cells of foci in early phases of development did not exhibit dye-transfer capacity, dye-coupling was observed in mass cultures of most transformed cell lines cloned from foci. Co-cultivation of communication-competent transformed cells with nontransformed cells to produce reconstructed foci generally resulted in a cessation of dye-transfer by transformed cells. An often reversible loss of communication competence thus accompanies the growth of transformed C3H/10T1/2 cells as foci and may constitute an adaptive response which facilitates focus growth in the presence of intercellular communication between monolayer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.