Abstract

The effect of a growth mechanism on the unit cell strain and the related change in the properties of single-crystal Ba0.8Sr0.2TiO3 films grown on MgO substrates according to the Frank–van der Merwe and Volmer–Weber growth mechanisms is studied. The unit cell strain is shown to depend substantially on the film thickness and the growth mechanism. It is found that the same film–substrate pair can be used to vary stresses in the film from two-dimensional tensile to compressive stresses due to a change in the growth mechanism and the film thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.