Abstract

The addition of graphene oxide (GO) and fly ash (FA) to SFRC (steel fiber reinforced concrete) increases frost resistance. Based on the analysis of the amelioration of GO on the frost resistance of SFRC, the improvement mechanism and the effects of GO and FA on the durability of SFRC were studied in depth. The test blocks’ compressive strength, relative dynamic modulus of elasticity, and mass-loss rate were tested through experiments. The pore distribution and morphological characteristics of concrete were captured by industrial CT scanning technology. The effects of GO and FA on the pore distribution and morphology of the SFRC are discussed. The results show that the compressive strength of GO-SFRC(graphene oxide and steel fiber reinforced concrete)with GO proportion of 0.03% is 28.20% higher than that of ordinary SFRC without freezing and thawing; after 100 freeze-thaw cycles, the compressive strength of the G0.03S25 increased by 31.70% compared with the compressive strength of the G0.00S25, and pore shape of G0.03S25 presents a spherical shape and an elliptical spherical shape; based on the data analysis of the strength loss, relative dynamic elastic modulus loss and mass-loss rate, it is considered that the properties of ordinary SFRC are the worst under freezing and thawing; as FA admixture increases, the porosity decreases; with FA of 30% and GO of 0.03%, the GO-FA-SFRC has the best frost resistance, as well as most of the pores are closed which resemble spheres and ellipsoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.