Abstract
Manipulation of stacking fault energy (SFE) plays a significant role in microstructure control and in turn mechanical properties of advanced alloys. In this work, we present the influence of grain size on the mechanical properties and fracture behavior of a non-equiatomic CoCrNi alloy with low SFE. Specimens with controlled grain sizes ranging from 0.61 to 6.4 µm were fabricated through rolling and annealing. A novel SFs-dominated plastic deformation mechanism was discovered. Tensile strength decreases monotonically with increasing grain size, while ductility achieves a peak value at the medium grain size, contradicting with the typical behavior observed in most single-phase face-centered cubic (FCC) metallic materials deformed primarily by dislocation slips and/or twinning. The fracture behavior changes from void coalescence to quasi cleavage with grain coarsening, and the fracture mechanisms were analyzed. Additionally, the evolution of SFs and phase transformation is explored at various deformation strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.