Abstract

In continuation of our earlier work on silica aerogels, the experimental results on monolithicity, bulk density and Vickers hardness of glycerol modified silica aerogels as a function of sintering temperatures are reported. The molar ratios of methanol (MeOH) solvent, glycerol (G) additive, ammonia (NH 4OH) catalyst and water (H 2O) to the tetramethoxysilane (TMOS) precursor were found to be best in between the ranges: 6–12, 0.3–0.83, 3.6 × 10 −2–1.0 × 10 −1 and 4–8, respectively, for the production of monolithic silica aerogels. The best quality silica aerogels in terms of monolithicity, transparency and low density have been obtained with the molar ratio of 1TMOS:0.83G:12MeOH:4H 2O:3.6 × 10 −3 NH 4OH, respectively. The aerogels of this molar ratio have been characterized by density, Vickers hardness measurements and scanning electron microscopic observations as a function of sintering temperatures. The pore size distribution was found to shift towards the narrow pore radii as the temperature increased above 260°C. The results have been supported by the particle and pore sizes observed using scanning electron microscopy technique and BET surface analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.