Abstract

This study was designed to determine the effects of gamma-hydroxybutyric acid (GHB) on tissue lactate and malondialdehyde (MDA) levels in rabbit brain after experimental head trauma. Thirty New Zealand rabbits were divided equally into three groups: group S was the sham-operated group, group C, and group GHB received head trauma, where group C was the untreated and group GHB was the treated group. Head trauma was delivered by performing a craniectomy over the right hemisphere and dropping a weight of 10 g from a height of 80 cm. GHB was administered 400 mg/kg intravenously for 10 minutes after the head trauma to group GHB. The nontraumatized side was named "1" and the traumatized side was named "2." One hour after trauma, brain cortices were resected from both sides and the concentrations of lactate and MDA were determined. There were significant differences between lactate and MDA levels of group S and all other groups (C1, C2, GHB1, and GHB2) except between lactate levels of group S and group GHB1, the nontraumatized and traumatized sides of groups C and group GHB, group C2 versus group GHB2, and group C1 versus group GHB1 (p < 0.05). Rectal temperature after the administration of GHB in group GHB was found lower than in groups S and C (p < 0.05). These results demonstrate that head trauma leads to an increase in brain tissue lactate and MDA levels, and GHB effectively suppresses the increase of lactate and MDA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.