Abstract

Once-through steam generators (OTSGs) are commonly used in the oil sands industry for steam generation forin-situthermal recovery of extra heavy oil. These are expensive operations with challenges associated with the deposition of foulants, arising from solids and hydrocarbons in the boiler feed water, on the inner tube wall that leads to a decreasedheat transfer rate. The foulant deposition also causes elevated tube-wall temperatures, which may lead to tube failure. This study examines the impact of foulant on the tube-wall temperature profile and vapor-to-liquid ratio in an OTSG. A three-dimensional finite volume model of multiphase flow and heat transfer in a single pass of a field-scale OTSG unit is described. Detailed flow behavior and heat transfer characteristics of water and steam from the CFD model were compared to field data. Thereafter, fouling was added to the model to explore overheating and erosion zones in the OTSG tubes. Velocity, temperature distribution, and steam generation in the OTSG tubes in the convection section and radiant section were investigated for areas prone overheating. It was found that the CFD model simulation results closely matched the bulk fluid temperature of the field unit. In the presence of fouling, the outer skin temperature from the model was well within the range of the thermocouple data from the field unit, enabling the application of the model to identify the foulant thickness based on the outer skin temperature. Lastly, the model demonstrated that the bends are the most likely sites for erosion within the pass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.