Abstract

BackgroundGlucocorticoids mediate responses to perceived stressors, thereby restoring homeostasis. However, prolonged glucocorticoid elevation may cause homeostatic overload. Using extensive field investigations of banded mongoose (Mungos mungo) groups in northern Botswana, we assessed the influence of reproduction, predation risk, and food limitation on apparent homeostatic overload (n=13 groups, 1542 samples from 268 animals). We experimentally manipulated reproduction and regulated food supply in captive mongooses, and compared their glucocorticoid responses to those obtained from free-living groups.ResultsAt the population level, variation in glucocorticoid levels in free-living mongooses was explained by food limitation: fecal organic matter, recent rainfall, and access to concentrated anthropogenic food resources. Soil macrofauna density and reproductive events explained less and predation risk very little variation in glucocorticoid levels. Reproduction and its associated challenges alone (under regulated feeding conditions) increased glucocorticoid levels 19-fold in a captive group. Among free-living groups, glucocorticoid elevation was seasonal (occurring in late dry season or early wet season when natural food resources were less available), but the timing of peak glucocorticoid production was moderated by access to anthropogenic resources (groups with fewer anthropogenic food sources had peaks earlier in dry seasons). Peak months represented 12- and 16-fold increases in glucocorticoids relative to nadir months with some animals exhibiting 100-fold increases. Relative to the captive group nadir, some free-living groups exhibited 60-fold increases in peak glucocorticoid levels with some animals exhibiting up to 800-fold increases. Most of these animals exhibited 1- to 10-fold increases relative to the captive animal peak.ConclusionsBanded mongooses exhibit seasonal chronic glucocorticoid elevation, associated primarily with food limitation and secondarily with reproduction. Magnitude and duration of this elevation suggests that this may be maladaptive for some animals, with possible fitness consequences. In late dry season, this population may face a convergence of stressors (food limitation, agonistic encounters at concentrated food resources, evictions, estrus, mate competition, parturition, and predation pressure on pups), which may induce homeostatic overload.

Highlights

  • Glucocorticoids mediate responses to perceived stressors, thereby restoring homeostasis

  • We asked the following questions: (1) Do banded mongooses experience chronic elevations of glucocorticoids? (2) What is the context for glucocorticoid elevations with regard to their timing, duration, and effect size? Lastly, (3) Which ecological covariates best explain variability in determined glucocorticoid levels among groups of free-living mongooses in this system? Based on literature concerning stressors in banded mongoose and other taxa, we investigated the influence of food limitation, reproduction, and predation risk on banded mongoose Fecal glucocorticoid metabolite (fGCM), each with covariates specific to our study system (Table 1)

  • Food limitation and access to anthropogenic food resources explain variability in glucocorticoid production at the population level for free-living banded mongoose groups, while reproduction explains less and predation risk explains very little variability

Read more

Summary

Introduction

Glucocorticoids mediate responses to perceived stressors, thereby restoring homeostasis. Using extensive field investigations of banded mongoose (Mungos mungo) groups in northern Botswana, we assessed the influence of reproduction, predation risk, and food limitation on apparent homeostatic overload (n=13 groups, 1542 samples from 268 animals). Glucocorticoids play a key role in resource allocation trade-offs among life history traits [1], energetics, Laver et al BMC Ecol (2020) 20:12 and immune function [2,3,4]. Glucocorticoid responses and their influences can be central to understanding species–environment interactions, providing information critical to understanding wildlife population needs in transforming landscapes. Suppressive—stressor-induced increases in glucocorticoid concentrations moderate the animal’s stress response (including Wave One) and prevent other mediators from “overshooting”

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.