Abstract

In this study, noticing foaming temperature as a factor, which induces thermodynamic instability for cell nucleation of Microcellular plastics, the effect of control method of foaming temperature on cell size and cell density - that is number per unit volume of foamed plastics - were investigated. Generally, foaming by using batch process is carried out as follows. First, blowing agent is soaked into plastics until saturation under high pressure and soaking temperature. After plastics were saturated with blowing agent, pressure is released rapidly and then temperature is raised to foaming temperature and cells are nucleated and grown. Finally, rapid cooling controls cell growth. In this case, two methods can be considered for the control of foaming temperature. One is the elevated temperature method in which temperature is raised to foaming temperature and cells are grown after decompression in the foaming process. The other is the constant temperature method in which the temperature is already kept at foaming temperature before decompression. That is, it is the method of performing soaking and foaming at the same temperature. Polymethylmethacrylate (PMMA) resins were foamed under foaming conditions which the same foaming magnification is produced by both methods and cell size and cell density of foamed PMMA were investigated. As results, in case of production of the foamed plastics having the same foam magnification, it turned out that cell density of foamed plastics becomes large and average cell size becomes small but the maximum cell size becomes large by the elevated temperature method. On the other hand, although the maximum cell size becomes small, average cell size becomes large by the constant temperature method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.