Abstract

This study aims to develop a restorative material having such mechanical and adhesive properties that it can be used both as a reconstruction material and as a luting cement. The experimental core build-up composite (CBC) was derived from a self-adhesive cement by the modification of its chemical formula, requiring the use of dedicated dentin and ceramic primers. The adhesive properties to zirconia and dentin were analyzed with a micro-Shear Bond Strength test (mSBS). The mechanical properties were analyzed by a flexural strength test. The results were compared with those obtained for other commercially available cements and core build-up materials, both before and after addition of 2 wt.% fluorographene. The CBC obtained average values in the mSBS of 49.7 ± 4.74 MPa for zirconia and 32.2 ± 4.9 MPa for dentin, as well as values of 110.9 ± 9.3 MPa for flexural strength and 6170.8 ± 703.2 MPa for Young's modulus. The addition of fluorographene, while increasing the Young's modulus of the core build-up composite by 10%, did not improve the adhesive capabilities of the primers and cement on either zirconia or dentin. The CBC showed adhesive and mechanical properties adequate both for a restoration material and a luting cement. The addition of 2 wt.% fluorographene was shown to interfere with the polymerization reaction of the material, suggesting the need for further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.