Abstract

Inappropriate assessment of rock stability may result in anthropogenic geohazards during underground space development and energy extraction. To reasonably estimate the factor of safety (FOS) for rock stability, it is critical to address uncertainties involved in the estimation. Fluid pressure gradient is of great concern in the estimation of the FOS. We carried out laboratory experiment and numerical modeling to reproduce fluid pressure gradient on a smooth fracture in granite. We compared the FOS derived from a nearly uniform fluid pressure gradient and that from a significantly non-linear fluid pressure gradient and found that the non-linear gradient of fluid pressure may amplify the FOS value. We also conducted a theoretical analysis to compare the FOS values for uniform, linear, and non-linear fluid pressure gradients. The results revealed that a considerable gradient and a pronounced non-linearity of fluid pressure are likely to cause premature failure of a rock fracture. Moreover, the upper bound of the FOS with a non-linear fluid pressure gradient depends on the initial FOS for a rock fracture without fluid pressurization. These findings are conducive to interpreting rock instability due to fluid pressurization and developing a more robust FOS estimation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.