Abstract
Influence of flavor compound chemical structure, including functional group and stereochemistry, and environmental relative humidity (RH) on the binding of volatile flavor compounds to dehydrated soy protein isolates (SPIs) was evaluated by inverse gas chromatography. Binding of selected volatile flavor compounds differed slightly between SPIs of different origins. Results showed that the flavor compound chemical structure greatly determined its binding potential to SPIs. Binding of nonpolar flavor compounds (hydrocarbon) to soy proteins was attributed mainly to nonspecific van der Waals dispersion forces and was not affected by adsorbed water. The more polar flavor compounds (ester, ketone, aldehyde, and alcohol) exhibited both specific (hydrogen bonding, dipole forces) and nonspecific interactions, and their binding with soy proteins was greatly impaired by adsorbed water in the extremely low humidity region (approaching 0% RH). Further water uptake in the 30 to 50% RH region did not significantly affect the binding of polar compounds, although sorption of alcohol compounds (when present at high levels) further increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.