Abstract

The Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy was hot rolled with different final rolling reductions at 400°C. The microstructure evolution and texture of the sheets were analyzed, and their effect on the mechanical properties was discussed. All of the rolled sheets consist of fine dynamically recrystallized grains with almost random orientation, large deformed grains with strong basal texture. In addition, bent lamellar-shaped long period stacking ordered (LPSO) phases due to kink deformation were observed in the deformed grains. The volume fraction of the dynamic recrystallization increased with increasing final rolling reduction and the basal texture weakened gradually. The strength of the alloy sheets changed a little with increasing final rolling reduction, while the yield anisotropy and the ductility were significantly improved. The sheet final-rolled with thickness reduction of 60% exhibits tensile yield strength of 306MPa, ultimate tensile strength of 393MPa and elongation to failure of 14.6% at ambient temperature, and tensile yield strength of 264MPa, ultimate tensile strength of 345MPa and elongation to failure of 19.4% at 250°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.