Abstract
Three-dimensional numerical simulations are carried out to investigate the effects of film-hole arrangement and blowing ratio on the squealer tip leakage flow field and tip film-cooling performance. Six film-hole arrangements with 13 holes are designed in the current study for comparison. In type-A and type-B, the film-cooling holes are arranged in a single row, located at the middle camber line or close to the suction-side squealer. The four modified film-hole arrangements are realized by placing two rows of total 7 film-cooling holes at the leading edge (type-C, type-D, type-E and type-F) and remaining the rest film-cooling holes in a row at the middle chord zone. The results show that the leakage flow entering the tip gap from the leading edge of suction side, the leading edge of pressure side and the middle chord and trailing edge of pressure side behaves different flow feature inside the tip cavity, inducing complicated swirling flow filed. The modified film-hole arrangements yield more reasonable film coverage on the tip surface by comparing with the single row film-hole arrangement under relatively high blowing ratios. In addition, the modified film-hole arrangements also show different rules on the film-cooling effectiveness distributions over some specific surfaces, such as tip cavity bottom surface and squealer top surface, as well as PS squealer inner surface and SS squealer inner surface. Among the presented four modified film-hole arrangements, type-D and type-F gain the most favorable film-cooling improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.