Abstract

Nonoilseed sunflower (Helianthus annuus L.) is naturally higher in cadmium (Cd) than many other grain crops. Because raising soil pH usually depresses Cd uptake by most species, a study was designed to determine if application of agricultural limestone to neutralize soil acidity would decrease Cd uptake by sunflower plants grown on different soils in the production area of North Dakota. The field experiments were conducted at 3 locations in 1991 and 2 locations in 1992. At each site, limestone was applied to bring soil pH to 6.5–7.0, or an additional 45 Mg ha-1 more limestone was applied, and these two treatments were compared to no-lime control. Commercial nonoilseed hybrid 954 was planted in these experiments. The rapid short-term lime-soil reaction occurred in first 12 weeks following limestone application. Mean kernel Cd concentration for each treatment varied from 0.35 to 1.45 mg kg-1 DW in the first year of the experiments, and from 0.37 to 1.23 mg kg-1 DW in the experiments of 1992 across all locations. Large variations in kernel Cd levels between locations were obtained. There were no significant differences among control and limestone treatments for kernel Cd, seedling leaf Cd and diagnostic leaf Cd within each location, respectively. In regression analysis, we found that kernel Cd level correlated with diagnostic leaf Cd concentration in each treatment, but poor correlations were obtained among other variables. These results indicated that limestone application did not reduce Cd uptake and transfer to kernels of sunflower, in contrast with most species studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.