Abstract

Excessive phosphorus (P) in water is the main reason for eutrophication, which has been a global problem for many years. For the adsorption treatment of phosphorus-containing wastewater, adsorbents are key research topics. In this study, we develop the synthesis of a series of Ce/Fe adsorbents by modifying the commercial cerium carbonate with Fe2(SO4)3. By conducting comprehensive analysis with XRD, FTIR, and SEM, we find that the amorphous granular structure and large chunky structure created by the high and low Fe content, respectively, both had a negative effect on the adsorption capacity of phosphate. Among different adsorbents, Ce/Fe-15/3, with Ce loading of 28.33 wt % and Fe loading of 5.66 wt %, exhibits high P adsorption capacity of 58 mg P/g (in pH = 7, 30 mg P/L solution). It also demonstrates excellent selectivity toward phosphate adsorption in Cl–, SO42–, and NO3– solution (up to 20 times of the phosphate molarity) and good adsorption stability in acidic environments (pH = 3–6). The adsorption behavior of Ce/Fe-15/3 can be modeled well by the Langmuir model and pseudo-second-order (PSO) model. By conducting the XPS analysis, we conclude that the adsorption mechanism is a combination effect of Ce/PO43– and Fe/PO43– chemical interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.