Abstract

The microstructure, texture distribution, tensile property and fracture toughness of 7A36 aluminum alloy profile were investigated by optical microscopy (OM), scanning electron microscopy (SEM), electron back scattered diffraction (EBSD), tensile and toughness tests, respectively. The results show that when extrusion temperature increased from 410 °C to 430 °C, the second phase grew and the intensity of aging state alloy increased. With the extrusion temperature increased, the fracture toughness and elongation increased firstly and the decreased. The fracture toughness KICcan reach to 46.47 MPa·m1/2 at 420 °C. The extruded and final state of the 7A36 profile was dominated by the textured texture (Brass, S, and Copper), accompanied by a small amount of recrystallized type texture (Cube and Goss). As the extrusion temperature increased, the hard deformation texture increased, resulting in an increase in strength. The increase of extrusion temperature led to the increase of dynamic recrystallization fraction. The dynamic recrystallization fraction of the extruded state was 2.26 % when extrusion temperature was 430 °C. The change in KIC performance is the combined result of re-crystallization, second phase and texture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.