Abstract

Solidification characteristics in most rapid solidification processes are controlled by heat extraction by the chill substrate and by melt undercooling, especially near the substrate. A dendrite growth model for this situation is derived in the present study. The model involves combined effects of the undercooled melt and the substrate as effective heat sinks. A dendrite is assumed to grow into an undercooled melt, with heat evolution at the dendrite tip occurring both into the undercooled melt and into the chill substrate through the growing solid. The significance of the proposed dendrite model and the stability of dendrite growth under the thermal conditions considered are discussed, using the Fe-Cr-Ni alloy system as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.