Abstract

The aging of ZnO nanoparticles in quantum dot light-emitting diode (QD-LED) structures was studied. Coarsening of as-synthesized ZnO nanoparticles is observed in both solution and thin film structures, which potentially deteriorates the performance of QD-LED devices over time. First, the temperature effect on ZnO coarsening was investigated, and it was revealed that aging of ZnO nanoparticles is faster at higher temperature due to a diffusion-controlled mechanism of nanoparticle coarsening. To observe aggregation of ZnO in the film state, the electron transporting part (ZnO/Al) of the QD-LED structure was prepared. The current density of a ZnO film and an electron-only device (QD/ZnO between two electrodes) was also measured. Resistance of the film increased as a function of aging time, which corresponded with observations of the ZnO film by optical microscopy. Aggregation of ZnO nanoparticles was directly measured by the root-mean-square value using atomic force microscopy. Ethanolamine (EA) stabilizer was added to the ZnO solution to disperse the ZnO nanoparticles without aggregation. The effect of EA on the surface passivation of the ZnO found to suppress pinhole formation, as revealed by scanning electron microscopy observations. Finally, the device lifetime was measured for QD-LEDs with EA-stabilized ZnO to understand the effect of ZnO aging on long-term QD-LED device operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.