Abstract

ABSTRACTGingivitis is one of the most common oral infections in humans. While sugar alcohols such as erythritol are suggested to have caries-preventive properties, it may also have beneficial effects in prevention of gingivitis by preventing maturation of oral biofilms. The aim of this study was to assess the effect of erythritol on the microbial ecology and the gingivitis phenotype of oral microcosms. Biofilms were inoculated with stimulated saliva from 20 healthy donors and grown in a gingivitis model in the continuous presence of 0 (control group), 5, and 10% erythritol. After 9 days of growth, biofilm formation, protease activity (gingivitis phenotype), and microbial profile analyses were performed. Biofilm growth was significantly reduced in the presence of erythritol, and this effect was dose dependent. Protease activity and the Shannon diversity index of the microbial profiles of the biofilms were significantly lower when erythritol was present. Microbial profile analysis revealed that presence of erythritol induced a compositional shift from periodontitis- and gingivitis-related taxa toward early colonizers. The results of this study suggest that erythritol suppresses maturation of the biofilms toward unhealthy composition. The gingivitis phenotype was suppressed and biofilm formation was reduced in the presence of erythritol. Therefore, it is concluded that erythritol may contribute to a healthy oral ecosystem in vitro.

Highlights

  • Citation for published version (APA): Janus, M

  • Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or interests, please let the Library know, stating your reasons

  • UvA-DARE is a service provided by the library of the University of Amsterdam

Read more

Summary

Introduction

Citation for published version (APA): Janus, M. J. F., Crielaard, W., Zaura, E., & Krom, B.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.