Abstract

The respiratory mucosa is the common port of entry of equine herpesvirus type 1 (EHV-1) and several other alphaherpesviruses. An important prerequisite for successful host invasion of the virus is to cross the epithelial cell layer and the underlying basement membrane barrier. In the present study, an analysis was performed to see if an EHV-1 infection of nasal mucosa epithelial cells leads to damage of the underlying extracellular matrix proteins. Nasal mucosa explants were inoculated with EHV-1 and collected at 0, 24 and 48hours post-inoculation (hpi). Then, double immunofluorescence staining was performed to detect viral-antigen-positive cells on the one hand and integrin alpha 6, laminin, collagen IV and collagen VII on the other hand. The area of these extracellular matrix proteins was measured in regions of interest (ROIs) at a magnification of 200X by means of the software imaging system ImageJ. ROIs were defined beneath uninfected and infected regions. In uninfected regions, 22-28% of the ROI was stained for integrin alpha 6, 18-37% for laminin, 14-38% for collagen IV and 18-26% for collagen VII. In infected regions, the percentage positive for integrin alpha 6 was significantly decreased to 0.1-9% and 0.1-6% after 24 and 48hours of inoculation, respectively. Infection did not alter the percentages for laminin and collagen IV. For collagen VII, an increase in the percentage (from 18-26% to 28-39%) could be observed underneath EHV-1-infected plaques at 48hours of inoculation. In conclusion, the results revealed a substantial impact of EHV-1 infection on integrin alpha 6 and collagen VII, two important components of the extracellular matrix, which are associated with the basement membrane and may facilitate virus penetration via hijacked leukocytes to underlying tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.