Abstract

1. Epomediol is a terpenoid compound that has been reported to stimulate bile acid synthesis and to reverse 17alpha- ethinyloestradiol-induced cholestasis. The aim of the present study was to investigate the contribution of changes in bile acid and cholesterol metabolism to the protective effects of epomediol in ethinyloestradiol-treated rats. Animals received epomediol for 5 days at 100 mg/kg daily, i.p., ethinyloestradiol for 5 days at 5 mg/kg, s.c., or a combination of both drugs. 2. When compared with control animals, epomediol treatment resulted in a significant increase in bile flow (+42%) and in the secretion of bile acids (+74%) and cholesterol (+42%). Ethinyloestradiol administration caused a significant decrease in bile flow (-43%), bile acid secretion (-37%) and cholesterol secretion (-45%). Bile flow, bile acid secretion and cholesterol secretion were significantly increased in animals receiving ethinyloestradiol plus epomediol compared with ethinyloestradiol-treated rats (+13, +29 and +31%, respectively). 3. Both cholesterol 7alpha-hydroxylase and hydroxy-3- methylglutaryl coenzyme A reductase activities were significantly increased in epomediol-treated rats (+30 and +96%, respectively). Cholesterol 7alpha-hydroxylase activity was significantly reduced by ethinyloestradiol (-22%) and did not differ from control values in animals receiving epomediol plus ethinyloestradiol. Levels of cholesterol 7alpha-hydroxylase mRNA were elevated (+41%) by epomediol, but were not significantly modified by ethinyloestradiol or ethinyloestradiol plus epomediol. 4. It is concluded that epomediol enhances bile acid secretion by increasing the expression of cholesterol 7alpha-hydroxylase. Changes in bile acid metabolism contribute to the effects of epomediol in rats with ethinyloestradiol-induced cholestasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.