Abstract

BackgroundEpigallocatechin gallate (EGCG) acts as an antioxidant by preventing oxidative stress. The effect of EGCG on aluminum-induced testicular injury is not clear. Hence, the present study is planned to investigate the effect of EGCG on aluminum chloride (AlCl3)-induced changes in behavior, biochemical parameters, and spermatogenesis in male Sprague-Dawley rats. The rats were divided into six groups with six animals each. All the animals were administered with respective assigned treatment once daily for 28 days. The animals in groups I to VI were administered with drug vehicle, AlCl3, vitamin C, EGCG, vitamin C, and EGCG, respectively. The animals in groups V and VI were additionally challenged with AlCl3 (10 mg/kg) immediately after vitamin C and EGCG administration, respectively. Changes in behavior were measured on day 1, 14 and 28. At the end of the study, the blood sample was collected from all the animals, and the serum was separated and used for biochemical analysis. Later, the rats were subjected to bilateral orchiectomy; sperm was collected from the cauda epididymis for microscopic examination. Then, the animals were sacrificed, and the organs such as the brain, lungs, heart, liver, kidney, spleen, and testis were collected for organ weight analysis.ResultsThe animal administered with AlCl3 showed a reduction in locomotor activity, grip strength, and escape latency time whereas vitamin C prevented the effect of AlCl3. But, EGCG did not show any significant changes in AlCl3-induced behavioral and biochemical changes. At the end of the study, vitamin C prevented AlCl3-induced behavioral and biochemical changes. The group of animals administered with AlCl3 showed a reduction in the number of spermatozoa whereas AlCl3 + vitamin C and AlCl3 + EGCG did not show any significant changes in the number of spermatozoa when compared to the control group.ConclusionEGCG prevented AlCl3-induced reduction in epididymal sperm count of male rats and did not show any significant effect on AlCl3-induced changes in behavior and biochemical parameters, whereas vitamin C had an ameliorative effect on AlCl3-induced changes in behavior, biochemical parameter, and spermatogenesis.Graphical abstract

Highlights

  • Epigallocatechin gallate (EGCG) acts as an antioxidant by preventing oxidative stress

  • EGCG prevented Aluminum chloride (AlCl3)-induced reduction in epididymal sperm count of male rats and did not show any significant effect on AlCl3-induced changes in behavior and biochemical parameters, whereas vitamin C had an ameliorative effect on AlCl3-induced changes in behavior, biochemical parameter, and spermatogenesis

  • 3.3 Effects of ECGC on biochemical parameters In the biochemical analysis, the animals administered with AlCl3 and AlCl3 + EGCG showed significant increases in the levels of glucose, Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), urea, and creatinine when compared to the control group (Table 1)

Read more

Summary

Introduction

Epigallocatechin gallate (EGCG) acts as an antioxidant by preventing oxidative stress. The present study is planned to investigate the effect of EGCG on aluminum chloride (AlCl3)-induced changes in behavior, biochemical parameters, and spermatogenesis in male Sprague-Dawley rats. The animals in groups I to VI were administered with drug vehicle, AlCl3, vitamin C, EGCG, vitamin C, and EGCG, respectively. Exposure to Al in drinking water is associated with health risks which can be acute and chronic toxicity. AlCl3 decreases the body weight, weights of testis or epididymis, number of normal sperm cells, sperm concentration and motility in experimental animals [10]. Accumulation of Al will cause male reproductive toxicity, and this may be mediated through various mechanisms inducing oxidative stress, interfering with spermatogenesis and steroidogenesis, impairing cell signaling, disrupting the blood-testis barrier, and affecting the endocrine system [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.