Abstract

Native high methoxy citrus pectin (NP) was de-esterified by pectin methyl esterase to produce modified pectins [MP (42, 37, and 33)] having different degrees of esterification. Complex coacervation between a pea protein isolate (PPI) and each pectin was investigated as a function of pH (8.0–1.5) and mixing ratio (1:1–30:1, PPI-pectin). Complex formation was found to be optimal for biopolymer-mixing ratios of 8:1, 8:1, 25:1 and 25:1 for PPI complexed with NP, MP42, MP37 and MP33, respectively, at pHs 3.6, 3.5, 3.9 and 3.9. And, the critical pHs associated with complex formation (accessed by turbidity) was found to shift significantly to higher pHs as the degree of esterification of the pectin decreased, whereas the shift in the pH corresponding to their initial interactions was minimal with degree of esterification. Complexation of PPI with NP and MP42 greatly improved the protein solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.